

Concrete with Alkali-Activated Slag and Nano-Impregnated Carbon fibre Mesh

Tang Luping
Full professor of Building Materials
Department of Architecture and Civil Engineering
Chalmers University of Technology
Gothenburg, Sweden

1

This presentation try to address

- What is **alkali-activated slag** (AAS) concrete? Which factors affect the strength and shrinkage of AAS concrete?
- What is the general durability of AAS concrete? How is the acid resistance and temperature stability of the concrete affected when using AAS?
- What potential structures can AAS concrete be suitable for?
- What are the obstacles to the application of AAS concrete in ordinary structures?
- How to improve adhesion between carbon fiber mesh and concrete?

2021-04-29

_

CHALMERS

Background

• What is alkali-activated slag (AAS) concrete?

2021-04-29

3

History of Alkali-Activated Materials (AAM)

Year	Researcher	Country	Main work
1930	Kuhl	Germany	Setting of slags + caustic potash
1937	Chassevent	unknown	Reactivity of slags + caustic potash and soda solution
1940	Purdon	Belgium	Clinker-free cement: slag + caustic soda or alkalis produced by a base and an alkaline salt
1957	Glukhovsky	USSR	Soil cement : hydrous or anhydrous aluminosilicates (glassy rocks, clays metallurgical slags, etc.) + alkalis, proposed cementing system M ₂ O-MeO-Me ₂ O ₃ -SiO ₂ -H ₂ O
1982	Davidovites	France	Geopolymer : alkalis + a burnt mixture of kaolinite, limestone and dolomite
1990	Tomas Kutti	Sweden	Alkali Activated Slag Mortar – Mechanical strengths, shrinkage and structure, Chalmers PhD thesis P-90:6

(M: alkali metal; Me: alkaline earth metal)

2021-04-29

5

A Hot Topic since 2000

2021-04-29

Some Example Buildings Made of AAM

A 24-storey buildig built with AAS on Berezinsa street 2, City of Lipetsk, Russia

Residential building in Mariupol, Ukraine, constructed from AAS precast blocks (exterior clad in plaster)

6-storey office and retail building built with AAS in Anyang City, Henan Province, China

2021-04-29

7

Groups of Alkali-activator

- 1. Caustic alkali: MOH (e.g. NaOH, KOH)
- 2. Non-silicate weak acid salts: M₂CO₃, M₂SO₃, M₂PO₄, MF, etc. (e.g. Na₂CO₃, K₂CO₃)
- 3. Silicates: $M_2O \cdot nSiO_2$ (e.g. $Na_2O \cdot nSiO_2$, $K_2O \cdot nSiO_2$)
- 4. Aluminates: M₂O·*n* Al₂O₃
- 5. Aluminosilicates: M₂O·Al₂O₃·(2-6) SiO₂
- 6. Non-silicate strong acid salts: M₂SO₄ (e.g. Na₂SO₄)

(Glukhovsky et al., 1980)

2021-04-29

Two Big Problems in AAS

- Low CaO/SiO₂ (only about 1) resulting in high shrinkage
- Variable setting time (sometimes it is advantage but sometimes it is too quick to complete casting)

9 2021-04-29

9

Vinnova research project

Green Cement Based on Ground Granulated Blast furnace Slag (GGBS) (2018 – 2021)

Aim of the project:

Develop fiber reinforced sustainable, competitive and advanced cementitious materials for industrial applications ranging from construction to transportation

Mainly based on alkali-activated GGBS (AAS)

swerea sicomp

10

2021-04-29

Important Parameters in Proportioning AAS Concrete

(Which factors affect the strength and shrinkage of AAS concrete?)

- Alkali content (Na₂O by wt% of slag)
- Silica content (SiO₂ by wt% of slag)
- Gypsum content (CaSO₄·2H₂O by wt% of slag)

11 2021-04-29

11

Results from Compressive Strength Test

Alkali-activated slag with different additions of alkali and silica

12

Τ,

Durability of AAS Concrete

(What is the general durability of AAS concrete? How is the acid resistance and temperature stability of the concrete affected when using AAS?)

- General durability (frost attack, chloride ingress, carbonation)
- Acid resistance
- High temperature stability

19

Resistance to Frost Scaling

2021-04-29

- Similar level of concretes with 5% silica and 30% GGBS,
- Better than those with commercial cement CEM I and CEM II/A.

2021-04-29

Resistance to Chloride Ingress

• Significantly better than that of concrete with Portland cement, even blended with GGBS.

2021-04-29

21

Resistance to Carbonation

- Higher than the plain Portland cement
- Similar as those blended with mineral additions (due to the lack of portlandite as a buffer for carbonation)

Tested under the accelerated and relatively dry condition!

2021-04-29

Potential Applications

(What potential structures can AAS concrete be suitable for?)

• Sewage pipes, blocks and elements for infrastructures of wastewater purification;

2021-04-29

29

Potential Applications

(What potential structures can AAS concrete be suitable for?)

• Composite concrete beams or walls for potential use in modular fireproof safes and vaults

2021-04-29

Obstacles to Application of AAS

(What are the obstacles to the application of AAS concrete in ordinary structures?)

Technical obstacles:

- Relatively larger drying shrinkage (about 3 times as much as OPC concrete);
- Relatively poor resistance to carbonation (similar to the other SCMs);
- · Uncertain air-entraining for resistance to frost scaling; and
- Uncertain superplasticizers for adjusting workability of fresh concrete

Non-technical obstacles:

National regulations or standardization!!!

USSR Industry standard OST 67-11-84: "Slag Alkaline Binders. Technical Specifications" (1984) Ukrainian Technical Specifications TU 10.20 UkrSSR 169-91: "A slag alkaline binder on sulfate-containing compounds of alkali metals" (1991)

BSI PAS 8820: "Construction Materials - Alkali Activated Cementitious Materials - Specification" (2016) Chinese standard JGJ/T439 "Technical standard for application of alkali-activated slag concrete" (2018)

2021_04_20

33

Carbon fiber mesh from China

(How to improve adhesion between **carbon fiber mesh** and concrete?)

2021-04-29

Pull-out Test of a Single Bundle

Specimen on the frame

Pull-out test

2021-04-29

35

Fibers after the pull-out test

2021-04-29

Results from Prisms with OPC

Ref: No fiber mesh N0: Original fiber mesh

N1: Nano-CS treated fiber mesh

- Dramatically increase the bonding between fibers and cementitious materials
- · Significantly increase the flexural strength
- · Significantly increase the ductility

2021-04-29

41

Five Different Types of Fiber Meshs

2021-04-29

Large Plate under 4-P Bending Test

2021-04-29

51

Deformation of Large Plate under Bending

2021-04-29

Concluding Remarks on AAS Concrete

- The main contributor to the strength of alkali-activated slag (AAS) materials is alkali (Na₂O in this study), whilst the addition of molecular silica contributes to the strength by 30% of that of alkali;
- Addition of gypsum negatively contribute to the strength but positively contribute to the reduction of shrinkage;
- Partial addition of ordinary Portland cement (OPC) and/or gypsum can markedly reduce drying shrinkage of AAS materials;
- A combination of 20% OPC and 5% gypsum can reduce the drying shrinkage of AAS at the early age (about 10 days) to a level similar to hardened OPC;
- AAS showed a better resistances to chloride ingress and acid attack, as well as better stability under high temperatures.

2021-04-29

Concluding Remarks on Nano-Impregnated Carbon Fiber

- Increased bonding with concrete by a factor of 2-3;
- Concrete reinforced by nano-impregnated carbon fiber mesh revealed good loading capacity with shear failure, similar as over-sized steel reinforcement.
- It is possible to produce bendable concrete plate with nano-impregnated carbon fiber mesh.

55 2021-04-29

55

